J. S. DUGDALE AND J. P. FRANCK

heat, C_v , below and above the transition forms a continuous curve within the experimental scatter of about 1% the excess energy consumption of the transition could be calculated from

$$\Delta E = (C_v^* - C_v) \,\Delta T$$

where ΔT is the temperature interval for which C_v^* had been measured and C_v is the interpolated specific heat at the centre of the heating interval. Within the experimental accuracy different heating intervals led to the same values of ΔE . This proves that the observed C_v^* data correspond to a real transition. The latent heat, L, of a transition is defined as the enthalpy change for the transition at constant pressure. As ΔE has been observed at constant volume a correction has to be applied to obtain L. This correction to ΔE turns out to be small for both ³He and ⁴He so that ΔE can be taken as virtually L. In table 3 we include values of the transition entropy $\Delta S = L/T$ and of the volume change ΔV calculated from the Clausius-Clapeyron equation.

The pressure at the transition temperature could be obtained from the pressure at the beginning of melting (as calculated from the data of Mills & Grilly) by the relation

$$p_{\rm tr.} - p_m = \int_{T_m}^{T_{\rm tr.}} \left(\delta p / \delta T\right)_v \mathrm{d} T = \int_{T_m}^{T_{\rm tr.}} \left(\delta S / \delta V\right)_T \mathrm{d} T.$$
(3)

For ³He we obtain the phase separation line as

 $p_{\rm tr.} = 1609 + 1133 (T - 17.80) \, {\rm Kg/cm^2},$ (4)

where the triple point is at T = 17.80 °K. It has been assumed here that the phase line is linear.

3.4. The fluid range

Measurements in the fluid range were extended up to 29 °K. The results for some selected molar volumes are included in figures 5 and 6. Smooth curves have been drawn through the experimental points and values of C_v read from these curves are given at rounded temperatures in tables 4 and 5. The scatter in the fluid range is much more pronounced

TABLE 4. SPECIFIC HEAT OF FLUID ⁴He AT ROUNDED VALUES OF TEMPERATURE

	V = 16.25	14.55	12.22	11-2
$T(^{\circ}K)$	C_{v}	C_{v}	$\overline{C_{p}}$	C,
7	1.84	A State	14 - J. S.	1. 10 <u>1.</u>
8	1.99		19 3	
9	2.13	S - 1942.		
10	2.25	2.12		
11	2.36	2.22		1
12	2.47	2.32	The state	1.10
13	2.56	2.42	<u></u>	7 - C
14	2.65	2.51	1.00 - 10.1	
15	2.72	2.59	a de la composición d	· · · · ·
16	2.79	2.67	100 - C	1 31
17	2.85	2.75	_	
18	2.90	2.81	2.64	1 Buch
19	2.93	2.87	2.72	3
21	2.99	2.98	2.85	2.79
23	3.02	3.05	2.95	2.90
25	3.04	3.10	3.04	3.00
27	3.04	3.12	3.11	3.09
29	3.04	3.13	3.16	3.10
	Tinitas V (and	mala). C las	I malant dam	15

Units: V (cm³/mole); C_n (cal mole⁻¹ deg⁻¹).

14